"""
Layers for physical operations
"""
import warnings
import torch
from torch import Tensor
from . import indexers, pairs
[docs]
class Gradient(torch.nn.Module):
def __init__(self, sign):
super().__init__()
assert sign in (-1, 1), "Sign of gradient must be +1 (gradient) or -1 (force)"
self.sign = sign
[docs]
def forward(self, molecular_energies, positions):
n_targets = molecular_energies.shape[1]
if n_targets == 1:
force = (
self.sign
* torch.autograd.grad(
molecular_energies.sum(), positions, create_graph=True
)[0]
)
else:
force = []
for i in range(n_targets):
tmp = torch.autograd.grad(
molecular_energies[:, i].sum(), positions, create_graph=True
)[0]
force.append(tmp)
force = self.sign * torch.stack(force, dim=1)
n_molecule, n_pairs, n_atoms, n_dims = force.shape
force = force.reshape(n_molecule, n_pairs, n_atoms * n_dims)
return force
[docs]
class MultiGradient(torch.nn.Module):
def __init__(self, signs):
super().__init__()
if isinstance(signs, int):
signs = (signs,)
for sign in signs:
assert sign in (-1,1), "Sign of gradient must be -1 or +1"
self.signs = signs
[docs]
def forward(self, molecular_energies: Tensor, *generalized_coordinates: Tensor):
if isinstance(generalized_coordinates, Tensor):
generalized_coordinates = (generalized_coordinates,)
assert len(generalized_coordinates) == len(self.signs), f"Number of items to take derivative w.r.t ({len(generalized_coordinates)}) must match number of provided signs ({len(self.signs)})."
grads = torch.autograd.grad(molecular_energies.sum(), generalized_coordinates, create_graph=True)
return tuple((sign * grad for sign, grad in zip(self.signs, grads)))
[docs]
class StressForce(torch.nn.Module):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.pbc = False
[docs]
def forward(self, energy, strain, coordinates, cell):
total_energy = energy.sum()
straingrad, grad = torch.autograd.grad(total_energy, [strain, coordinates], create_graph=self.training)
if self.pbc:
stress = straingrad / torch.det(cell)
else:
stress = straingrad
return -grad, stress
[docs]
class Dipole(torch.nn.Module):
def __init__(self):
super().__init__()
self.summer = indexers.MolSummer()
[docs]
def forward(self, charges: Tensor, positions: Tensor, mol_index: Tensor, n_molecules: int):
if charges.shape[1] > 1:
# charges contain multiple targets, so set up broadcasting
charges = charges.unsqueeze(2)
positions = positions.unsqueeze(1)
# shape is (n_atoms, 3, n_targets) in multi-target mode
# shape is (n_atoms, 3) in single target mode
dipole_elements = charges * positions
dipoles = self.summer(dipole_elements, mol_index, n_molecules)
return dipoles
[docs]
class Quadrupole(torch.nn.Module):
"""Computes quadrupoles as a flattened (n_molecules,9) array.
NOTE: Uses normalization sum_a q_a (r_a,i*r_a,j - 1/3 delta_ij r_a^2)"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.summer = indexers.MolSummer()
[docs]
def forward(self, charges, positions, mol_index, n_molecules):
# positions shape: (atoms, xyz)
# charge shape: (atoms,1)
ri_rj = positions.unsqueeze(1) * positions.unsqueeze(2)
ri_rj_flat = ri_rj.reshape(-1, 9) # Flatten to component
rsq = (positions**2).sum(dim=1).unsqueeze(1) # unsqueeze over component index
delta_ij = torch.eye(3, device=rsq.device).flatten().unsqueeze(0) # unsqueeze over atom index
quad_elements = charges * (ri_rj_flat - (1 / 3) * (rsq * delta_ij))
quadrupoles = self.summer(quad_elements, mol_index, n_molecules)
return quadrupoles
[docs]
class CoulombEnergy(torch.nn.Module):
""" Computes the Coulomb Energy of the molecule/configuration.
Coulomb energies is defined for pairs of atoms. Here, we adopt the
convention that the Coulomby energy for a pair of atoms is evenly
partitioned to both atoms as the 'per-atom energies'. Therefore, the
atom energies sum to the molecular energy; similar to the HEnergy.
"""
def __init__(self, energy_conversion_factor):
super().__init__()
self.register_buffer("energy_conversion_factor", torch.tensor(energy_conversion_factor))
self.summer = indexers.MolSummer()
[docs]
def forward(self, charges, pair_dist, pair_first, pair_second, mol_index, n_molecules):
voltage_pairs = self.energy_conversion_factor * (charges[pair_second] / pair_dist.unsqueeze(1))
n_atoms, _ = charges.shape
voltage_atom = torch.zeros((n_atoms, 1), device=charges.device, dtype=charges.dtype)
voltage_atom.index_add_(0, pair_first, voltage_pairs)
coulomb_atoms = 0.5*voltage_atom * charges
coulomb_molecule = self.summer(coulomb_atoms, mol_index, n_molecules)
return coulomb_molecule, coulomb_atoms, voltage_atom
[docs]
class ScreenedCoulombEnergy(CoulombEnergy):
""" Computes the Coulomb Energy of the molecule/configuration.
The convention for the atom energies is the same as CoulombEnergy
and the HEnergy.
"""
def __init__(self, energy_conversion_factor, screening, radius=None):
super().__init__(energy_conversion_factor)
if screening is None:
raise ValueError("Screened Coulomb requires specification of a screening type.")
if radius is None:
raise ValueError("Screened Coulomb requires specification of a radius")
if isinstance(screening, type):
screening = screening()
self.radius = radius
self.screening = screening
self.bond_summer = pairs.MolPairSummer()
[docs]
def forward(self, charges, pair_dist, pair_first, pair_second, mol_index, n_molecules):
screening = self.screening(pair_dist, self.radius).unsqueeze(1)
screening = torch.where((pair_dist < self.radius).unsqueeze(1), screening, torch.zeros_like(screening))
# Voltage pairs for per-atom energy
voltage_pairs = self.energy_conversion_factor * (charges[pair_second] / pair_dist.unsqueeze(1))
voltage_pairs = voltage_pairs * screening
n_atoms, _ = charges.shape
voltage_atom = torch.zeros((n_atoms, 1), device=charges.device, dtype=charges.dtype)
voltage_atom.index_add_(0, pair_first, voltage_pairs)
coulomb_atoms = 0.5 * voltage_atom * charges
coulomb_molecule = self.summer(coulomb_atoms, mol_index, n_molecules)
return coulomb_molecule, coulomb_atoms, voltage_atom
[docs]
class CombineScreenings(torch.nn.Module):
""" Returns products of different screenings for Screened Coulomb Interactions.
"""
def __init__(self, screening_list):
super().__init__()
self.SL = torch.nn.ModuleList(screening_list)
[docs]
def forward(self, pair_dist, radius):
""" Product of different screenings applied to pair_dist upto radius.
:param pair_dist: torch.tensor, dtype=float64: 'Neighborlist' distances for coulomb energies.
:param radius: Maximum radius that Screened-Coulomb is evaluated upto.
:return screening: Weights for screening for all pair_dist.
"""
screening = None
for s in self.SL:
if screening is None:
screening = s(pair_dist=pair_dist, radius=radius)
else:
screening = screening * s(pair_dist=pair_dist, radius=radius)
return screening
[docs]
class AlphaScreening(torch.nn.Module):
def __init__(self, alpha):
super().__init__()
self.alpha = alpha
# Note: This is somewhat incomplete as it does not include a k-space contribution -- more is needed
[docs]
class EwaldRealSpaceScreening(AlphaScreening):
def __init__(self, alpha):
warnings.warn("Ewald implementation incomplete, does not include k-space contributions.")
super().__init__(alpha)
[docs]
def forward(self, pair_dist, radius):
q = pair_dist / radius
eta = self.alpha * radius
return torch.erfc(eta * q)
# Note: typically
[docs]
class WolfScreening(AlphaScreening):
def __init__(self, alpha):
warnings.warn("Wolf implemnetation uses exact derivative of the potential.")
super().__init__(alpha)
[docs]
def forward(self, pair_dist, radius):
q = pair_dist / radius
eta = self.alpha * radius
return torch.erfc(eta * q) - q * torch.erfc(eta)
[docs]
class LocalDampingCosine(AlphaScreening):
""" Local damping using complement of the hipnn cutoff function. ('glue-on' method)
g = 1 if pair_dist > R_cutoff, 1 - [cos(pi/2 * dist * R_cutoff)]^2 otherwise
"""
def __init__(self, alpha):
"""
:param alpha: R_cutoff for glue-on function to ensure
smooth crossover from hipnn energy to long-range coulomb energy.
"""
super().__init__(alpha)
[docs]
def forward(self, pair_dist, radius):
"""
:param pair_dist: torch.tensor, dtype=float64: 'Neighborlist' distances for coulomb energies.
:param radius: Maximum radius that Screened-Coulomb is evaluated upto.
:return screening: Weights for screening for each pair.
"""
pi = torch.tensor([3.141592653589793238], device=pair_dist.device)
screening = torch.subtract(torch.tensor([1.0], device=pair_dist.device), torch.square(torch.cos(0.5*pi*pair_dist/self.alpha)))
# pair_dist greater than cut-off; no local-damping.
screening = torch.where((pair_dist<self.alpha), screening, torch.ones_like(screening))
return screening
[docs]
class QScreening(torch.nn.Module):
def __init__(self, p_value):
super().__init__()
self.p_value = p_value
@property
def p_value(self):
return self._p_value
@p_value.setter
def p_value(self, value):
value = int(value)
self._p_value = value
powers = torch.arange(1, value + 1, dtype=torch.long).unsqueeze(0)
self.register_buffer("powers", powers)
[docs]
def forward(self, pair_dist, radius):
q = pair_dist / radius
q_factors = 1 - torch.pow(q.unsqueeze(1), self.powers)
product = q_factors.prod(dim=1)
return product
[docs]
class PerAtom(torch.nn.Module):
[docs]
def forward(self, features, species):
n_atoms = (species != 0).type(features.dtype).sum(dim=1)
return features / n_atoms.unsqueeze(1)
[docs]
class VecMag(torch.nn.Module):
[docs]
def forward(self, vector_feature):
return torch.norm(vector_feature, dim=1)
[docs]
class CombineEnergy(torch.nn.Module):
"""
Combines the energies (molecular and atom energies) from two different
nodes, e.g. HEnergy, Coulomb, or ScreenedCoulomb Energy Nodes.
"""
def __init__(self):
super().__init__()
self.summer = indexers.MolSummer()
[docs]
def forward(self, atom_energy_1, atom_energy_2, mol_index, n_molecules):
"""
:param: atom_energy_1 per-atom energy from first node.
:param: atom_energy_2 per atom energy from second node.
:param: mol_index the molecular index for atoms in the batch
:param: total number of molecules in the batch
:return: Total Energy
"""
total_atom_energy = atom_energy_1 + atom_energy_2
mol_energy = self.summer(total_atom_energy, mol_index, n_molecules)
return mol_energy, total_atom_energy