Source code for hippynn.layers.physics

"""
Layers for physical operations
"""
import warnings

import torch
from torch import Tensor

from . import indexers, pairs


[docs] class Gradient(torch.nn.Module): def __init__(self, sign): super().__init__() assert sign in (-1, 1), "Sign of gradient must be +1 (gradient) or -1 (force)" self.sign = sign
[docs] def forward(self, molecular_energies, positions): n_targets = molecular_energies.shape[1] if n_targets == 1: force = ( self.sign * torch.autograd.grad( molecular_energies.sum(), positions, create_graph=True )[0] ) else: force = [] for i in range(n_targets): tmp = torch.autograd.grad( molecular_energies[:, i].sum(), positions, create_graph=True )[0] force.append(tmp) force = self.sign * torch.stack(force, dim=1) n_molecule, n_pairs, n_atoms, n_dims = force.shape force = force.reshape(n_molecule, n_pairs, n_atoms * n_dims) return force
[docs] class MultiGradient(torch.nn.Module): def __init__(self, signs): super().__init__() if isinstance(signs, int): signs = (signs,) for sign in signs: assert sign in (-1,1), "Sign of gradient must be -1 or +1" self.signs = signs
[docs] def forward(self, molecular_energies: Tensor, *generalized_coordinates: Tensor): if isinstance(generalized_coordinates, Tensor): generalized_coordinates = (generalized_coordinates,) assert len(generalized_coordinates) == len(self.signs), f"Number of items to take derivative w.r.t ({len(generalized_coordinates)}) must match number of provided signs ({len(self.signs)})." grads = torch.autograd.grad(molecular_energies.sum(), generalized_coordinates, create_graph=True) return tuple((sign * grad for sign, grad in zip(self.signs, grads)))
[docs] class StressForce(torch.nn.Module): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.pbc = False
[docs] def forward(self, energy, strain, coordinates, cell): total_energy = energy.sum() straingrad, grad = torch.autograd.grad(total_energy, [strain, coordinates], create_graph=self.training) if self.pbc: stress = straingrad / torch.det(cell) else: stress = straingrad return -grad, stress
[docs] class Dipole(torch.nn.Module): def __init__(self): super().__init__() self.summer = indexers.MolSummer()
[docs] def forward(self, charges: Tensor, positions: Tensor, mol_index: Tensor, n_molecules: int): if charges.shape[1] > 1: # charges contain multiple targets, so set up broadcasting charges = charges.unsqueeze(2) positions = positions.unsqueeze(1) # shape is (n_atoms, 3, n_targets) in multi-target mode # shape is (n_atoms, 3) in single target mode dipole_elements = charges * positions dipoles = self.summer(dipole_elements, mol_index, n_molecules) return dipoles
[docs] class Quadrupole(torch.nn.Module): """Computes quadrupoles as a flattened (n_molecules,9) array. NOTE: Uses normalization sum_a q_a (r_a,i*r_a,j - 1/3 delta_ij r_a^2)""" def __init__(self, **kwargs): super().__init__(**kwargs) self.summer = indexers.MolSummer()
[docs] def forward(self, charges, positions, mol_index, n_molecules): # positions shape: (atoms, xyz) # charge shape: (atoms,1) ri_rj = positions.unsqueeze(1) * positions.unsqueeze(2) ri_rj_flat = ri_rj.reshape(-1, 9) # Flatten to component rsq = (positions**2).sum(dim=1).unsqueeze(1) # unsqueeze over component index delta_ij = torch.eye(3, device=rsq.device).flatten().unsqueeze(0) # unsqueeze over atom index quad_elements = charges * (ri_rj_flat - (1 / 3) * (rsq * delta_ij)) quadrupoles = self.summer(quad_elements, mol_index, n_molecules) return quadrupoles
[docs] class CoulombEnergy(torch.nn.Module): """ Computes the Coulomb Energy of the molecule/configuration. Coulomb energies is defined for pairs of atoms. Here, we adopt the convention that the Coulomby energy for a pair of atoms is evenly partitioned to both atoms as the 'per-atom energies'. Therefore, the atom energies sum to the molecular energy; similar to the HEnergy. """ def __init__(self, energy_conversion_factor): super().__init__() self.register_buffer("energy_conversion_factor", torch.tensor(energy_conversion_factor)) self.summer = indexers.MolSummer()
[docs] def forward(self, charges, pair_dist, pair_first, pair_second, mol_index, n_molecules): voltage_pairs = self.energy_conversion_factor * (charges[pair_second] / pair_dist.unsqueeze(1)) n_atoms, _ = charges.shape voltage_atom = torch.zeros((n_atoms, 1), device=charges.device, dtype=charges.dtype) voltage_atom.index_add_(0, pair_first, voltage_pairs) coulomb_atoms = 0.5*voltage_atom * charges coulomb_molecule = self.summer(coulomb_atoms, mol_index, n_molecules) return coulomb_molecule, coulomb_atoms, voltage_atom
[docs] class ScreenedCoulombEnergy(CoulombEnergy): """ Computes the Coulomb Energy of the molecule/configuration. The convention for the atom energies is the same as CoulombEnergy and the HEnergy. """ def __init__(self, energy_conversion_factor, screening, radius=None): super().__init__(energy_conversion_factor) if screening is None: raise ValueError("Screened Coulomb requires specification of a screening type.") if radius is None: raise ValueError("Screened Coulomb requires specification of a radius") if isinstance(screening, type): screening = screening() self.radius = radius self.screening = screening self.bond_summer = pairs.MolPairSummer()
[docs] def forward(self, charges, pair_dist, pair_first, pair_second, mol_index, n_molecules): screening = self.screening(pair_dist, self.radius).unsqueeze(1) screening = torch.where((pair_dist < self.radius).unsqueeze(1), screening, torch.zeros_like(screening)) # Voltage pairs for per-atom energy voltage_pairs = self.energy_conversion_factor * (charges[pair_second] / pair_dist.unsqueeze(1)) voltage_pairs = voltage_pairs * screening n_atoms, _ = charges.shape voltage_atom = torch.zeros((n_atoms, 1), device=charges.device, dtype=charges.dtype) voltage_atom.index_add_(0, pair_first, voltage_pairs) coulomb_atoms = 0.5 * voltage_atom * charges coulomb_molecule = self.summer(coulomb_atoms, mol_index, n_molecules) return coulomb_molecule, coulomb_atoms, voltage_atom
[docs] class CombineScreenings(torch.nn.Module): """ Returns products of different screenings for Screened Coulomb Interactions. """ def __init__(self, screening_list): super().__init__() self.SL = torch.nn.ModuleList(screening_list)
[docs] def forward(self, pair_dist, radius): """ Product of different screenings applied to pair_dist upto radius. :param pair_dist: torch.tensor, dtype=float64: 'Neighborlist' distances for coulomb energies. :param radius: Maximum radius that Screened-Coulomb is evaluated upto. :return screening: Weights for screening for all pair_dist. """ screening = None for s in self.SL: if screening is None: screening = s(pair_dist=pair_dist, radius=radius) else: screening = screening * s(pair_dist=pair_dist, radius=radius) return screening
[docs] class AlphaScreening(torch.nn.Module): def __init__(self, alpha): super().__init__() self.alpha = alpha
# Note: This is somewhat incomplete as it does not include a k-space contribution -- more is needed
[docs] class EwaldRealSpaceScreening(AlphaScreening): def __init__(self, alpha): warnings.warn("Ewald implementation incomplete, does not include k-space contributions.") super().__init__(alpha)
[docs] def forward(self, pair_dist, radius): q = pair_dist / radius eta = self.alpha * radius return torch.erfc(eta * q)
# Note: typically
[docs] class WolfScreening(AlphaScreening): def __init__(self, alpha): warnings.warn("Wolf implemnetation uses exact derivative of the potential.") super().__init__(alpha)
[docs] def forward(self, pair_dist, radius): q = pair_dist / radius eta = self.alpha * radius return torch.erfc(eta * q) - q * torch.erfc(eta)
[docs] class LocalDampingCosine(AlphaScreening): """ Local damping using complement of the hipnn cutoff function. ('glue-on' method) g = 1 if pair_dist > R_cutoff, 1 - [cos(pi/2 * dist * R_cutoff)]^2 otherwise """ def __init__(self, alpha): """ :param alpha: R_cutoff for glue-on function to ensure smooth crossover from hipnn energy to long-range coulomb energy. """ super().__init__(alpha)
[docs] def forward(self, pair_dist, radius): """ :param pair_dist: torch.tensor, dtype=float64: 'Neighborlist' distances for coulomb energies. :param radius: Maximum radius that Screened-Coulomb is evaluated upto. :return screening: Weights for screening for each pair. """ pi = torch.tensor([3.141592653589793238], device=pair_dist.device) screening = torch.subtract(torch.tensor([1.0], device=pair_dist.device), torch.square(torch.cos(0.5*pi*pair_dist/self.alpha))) # pair_dist greater than cut-off; no local-damping. screening = torch.where((pair_dist<self.alpha), screening, torch.ones_like(screening)) return screening
[docs] class QScreening(torch.nn.Module): def __init__(self, p_value): super().__init__() self.p_value = p_value @property def p_value(self): return self._p_value @p_value.setter def p_value(self, value): value = int(value) self._p_value = value powers = torch.arange(1, value + 1, dtype=torch.long).unsqueeze(0) self.register_buffer("powers", powers)
[docs] def forward(self, pair_dist, radius): q = pair_dist / radius q_factors = 1 - torch.pow(q.unsqueeze(1), self.powers) product = q_factors.prod(dim=1) return product
[docs] class PerAtom(torch.nn.Module):
[docs] def forward(self, features, species): n_atoms = (species != 0).type(features.dtype).sum(dim=1) return features / n_atoms.unsqueeze(1)
[docs] class VecMag(torch.nn.Module):
[docs] def forward(self, vector_feature): return torch.norm(vector_feature, dim=1)
[docs] class CombineEnergy(torch.nn.Module): """ Combines the energies (molecular and atom energies) from two different nodes, e.g. HEnergy, Coulomb, or ScreenedCoulomb Energy Nodes. """ def __init__(self): super().__init__() self.summer = indexers.MolSummer()
[docs] def forward(self, atom_energy_1, atom_energy_2, mol_index, n_molecules): """ :param: atom_energy_1 per-atom energy from first node. :param: atom_energy_2 per atom energy from second node. :param: mol_index the molecular index for atoms in the batch :param: total number of molecules in the batch :return: Total Energy """ total_atom_energy = atom_energy_1 + atom_energy_2 mol_energy = self.summer(total_atom_energy, mol_index, n_molecules) return mol_energy, total_atom_energy