metric_tracker module
Full Documentation for hippynn.experiment.metric_tracker
module.
Click here for a summary page.
Keep track of training metrics over the experiment
- class MetricTracker(metric_names, stopping_key, quiet=False)[source]
Bases:
object
MetricTracker instances keep track of metrics and models for an experiment
- Variables:
metric_names – the tracked metrics
stopping_key – the metric used to determine what model is best
best_metric_values – dictionary of metric keys to the best metric values observed so far. lower is assumed to be better.
best_model – state dict for the best model so far.
epoch_metric_values – list (index epoch) of dictionary (key split, value of dictionary (key metric, value metric value)
other_metric_values – dictionary of metric values at other times than after an epoch, for example the final test values.
epoch_times – timing info for each epoch
quiet – whether to print the values registered.
- evaluation_print_better(evaluation_dict, better_dict, quiet=None, _print=<built-in function print>)[source]
- register_metrics(metric_info, when)[source]
- Parameters:
metric_info – dictionary of metric names: metric values
when – string or integer specifying epoch number.
- Returns:
- property current_epoch
- plot_all_over_time(*args)
- table_evaluation_print(evaluation_dict, metric_names, n_columns, _print=<built-in function print>)[source]
Print metric results as a table.
- Parameters:
evaluation_dict – dict[eval type]->dict[metric]->value
metric_names – Names
n_columns – Number of columns for name fields.
- Returns:
None
- table_evaluation_print_better(evaluation_dict, better_dict, metric_names, n_columns, _print=<built-in function print>)[source]
Print metric results as a table, add a ‘*’ character for metrics in better_dict.
- Parameters:
evaluation_dict – dict[eval type]->dict[metric]->value
better_dict – dict[eval type]->dict[metric]->bool
metric_names – Names
n_columns – Number of columns for name fields.
- Returns:
None