loss module
Full Documentation for hippynn.graphs.nodes.loss
module.
Click here for a summary page.
Nodes for constructing loss functions.
- class MAELoss(predicted, true)[source]
Bases:
_BaseCompareLoss
- torch_module = LambdaModule(l1_loss)
- class MSELoss(predicted, true)[source]
Bases:
_BaseCompareLoss
- torch_module = LambdaModule(mse_loss)
- class Mean(parent)[source]
Bases:
ReduceSingleNode
- torch_module = LambdaModule(mean)
- class MeanSq(parent)[source]
Bases:
ReduceSingleNode
- torch_module = LambdaModule(mean_sq)
- class ReduceSingleNode(parent)[source]
Bases:
SingleNode
- class RsqMod(*args, **kwargs)[source]
Bases:
Module
- forward(predicted, true)[source]
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class Std(parent)[source]
Bases:
ReduceSingleNode
- torch_module = LambdaModule(std)
- class Var(parent)[source]
Bases:
ReduceSingleNode
- torch_module = LambdaModule(var)
- class WeightedMAELoss(predicted, true, weight)[source]
Bases:
_WeightedCompareLoss
- torch_module = WeightedMAELoss()
- class WeightedMSELoss(predicted, true, weight)[source]
Bases:
_WeightedCompareLoss
- torch_module = WeightedMSELoss()
- absolute_errors(predict: Tensor, true: Tensor)[source]
Compute the absolute errors with phases between predicted and true values. In other words, prediction should be close to the absolute value of true, and the sign does not matter.
- Parameters:
predict (torch.Tensor) – predicted values
true (torch.Tensor) – true values
- Returns:
errors
- Return type:
torch.Tensor